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a b s t r a c t

In a previous publication we demonstrated a fast simulation tool for solution of electrophoretic focusing
and separation. We here describe the novel mathematical model and numerical algorithms used to create
this code. These include the representation of advection–diffusion equations on an adaptive grid, high-
resolution discretization of the equations (sixth order compact), a new variational-based approach for
controlling the motion of grid points, and new boundary conditions which enable solution in a moving
frame of reference. We discuss the advantages of combining a high-resolution discretization with an
adaptive grid in accurately resolving sharp interfaces in isotachophoresis, and provide verification against
known analytical solutions and comparison with prevailing exiting numerical algorithms.

© 2009 Elsevier B.V. All rights reserved.
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. Introduction

Isotachophoresis (ITP) is an electrophoresis technique which
llows for simultaneous separation and focusing of a wide range
f chemical and biological species. The technique is useful in
umerous applications including drug discovery, toxin detection,
harmacology, genetics and food analysis [1,2]. ITP is also very com-
atible with miniaturized chemical analysis systems as it is robust
o implement, enhances sensitivity, and allows for separations in
elatively short channels [3].
As shown schematically in Fig. 1, ITP uses a discontinuous buffer
ystem consisting of leading (LE) and terminating electrolytes (TE).
hese respectively have higher and lower effective electrophoretic
obility than all other species in the system. Sample mixture is
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introduced between the two (or can be included within the TE
and/or LE). When an electric field is applied, all species separate
simultaneously and focus into segregated zones according to their
respective mobilities. Focusing occurs within an electric field gra-
dient between the LE and TE as sample ions cannot overspeed
the LE or underspeed the TE. ITP presents particularly difficult
design and simulation challenges, as it typically results in extremely
high gradients in both electric field and species concentration (e.g.,
∼100 mM concentration change over order 1 �m with a field gradi-
ent of 104 V/m2). This is due to non-linear electromigration physics
which gives rise to ion concentration shock waves. Accurately
resolving such sharp interfaces is of key importance in ITP as ana-
lytes often focus at these interfaces (e.g., analyte 2 in Fig. 1).

There has been significant advancement in recent yeas in the
incorporation of additional physical modules into electrophoretic-

transport solvers. For example, Mosher et al. added models for
protein mobility [4] and electroosmotic flow [5]. Thormann et al.
expanded the electroosmotic flow model to account for discontinu-
ous buffer systems [6]. Hruska et al. [7] included the dependence of
mobility and dissociation constant on ionic strength, and Bercovici

http://www.sciencedirect.com/science/journal/00219673
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mailto:juan.santiago@stanford.edu
dx.doi.org/10.1016/j.chroma.2009.11.072
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Fig. 1. Schematic of a typical finite-sample isotachophoresis process. (a) A simple microchannel is connected to two reservoirs. A mixed sample of analytes is introduced
between a leading electrolyte (LE) and a trailing electrolyte (TE). (b) The interfaces between the various analytes are initially diffused, and analytes are mixed homogenously.
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c) An electric field is applied along the channel causing analytes to separate into d
balance between electromigration and diffusion. Analytes (A1, A3) with initial rel
ithin a finite region of locally uniform concentration. Other analytes (A3) focu
etermined by the interfaces of its neighboring electrolytes.

t al. [8] added a model for Taylor-type dispersion due to pressure-
riven flow or non-uniform electroosmotic flow. An ideal solver is
ne capable of simulating essential physics (accounting for various
nd coupled phenomena), while providing numerically accurate
esults in a short time.

The problem of obtaining accurate, yet stable and non-
scillatory solutions for electrophoresis problems has engaged
esearchers for over 20 years. Existing proposed solutions can be
oughly divided into non-dissipative centered schemes, requiring
large number of grid points to reduce oscillations, and to dis-

ipative schemes offering faster solutions at the cost of physical
ccuracy. Dose and Guiochon [9] were perhaps the first to formally
ddress the issue of numerical oscillations in the field of elec-
rophoretic transport and derived a monotonicity condition for the
ase of a second order spatial discretization. This condition states
hat the cell Peclet number should satisfy throughout the domain
e�x = a �x/D < 2, where a is the advection velocity (the sum of elec-
romigration and bulk flow in the case of ITP), D is the diffusion
oefficient, and �x is the grid spacing. For second order schemes
n uniform grids, and at realistic electric fields and channel lengths,
his requirement translates to O(103)–O(104) grid points and to
ong computation times, sometimes on the order of days even on

odern computers [10]. While such long computations may be
atisfactory for basic research of electrophoretic transport phe-
omena, they can rarely serve as a design and optimization tool for
xperimentalists. While several new schemes have been proposed
or dissipative solutions [11–15], non-dissipative implementations
ave essentially remained unchanged (from a numerical point of
iew) since the first implementation in 1983 [16], most utilizing a
entered second order discretization on a uniform grid.

In [8], we reported an open-source simulation tool for one-
imensional electrophoresis, intended for use by the microfluidics
ommunity. We presented the various physical modules included
n the code (including chemical equilibrium, electroosmotic flow,
ressure-driven flow and dispersion) and compared its perfor-

ance with existing standard techniques. We referred readers to a

uture publication for a detailed description of the numerical meth-
ds.

The current work provides full details and discussions, both
heoretical and practical, for numerical simulations of ITP using
, focused zones. The interfaces between the various ion species sharpen, achieving
y high concentration reach a “plateau mode” – in which concentration is saturated
eak mode” and acquire an approximately Gaussian distribution whose width is

a high-order compact scheme coupled to an adaptive grid. While
the numerical technique presented here is applicable to a wide
range of electrophoretic application (and potentially to other one-
dimensional non-linear advection–diffusion problems), we choose
to focus here on ITP as it exhibits the most significant model-
ing challenges. In Section 2 we present the derivation of a new
polynomial form for multi-species multi-valent chemical equilib-
rium which allows direct (rather than the typical iterative) solution
of local pH. In modeling the governing equation we present the
advection–diffusion equations entirely in terms of total concen-
tration (as opposed to dependency on individual ionic states). This
form is subsequently used in Section 3 to derive new characteristics
based boundary conditions enabling solution in a moving frame of
reference. In Section 3 we also derive the mapping of the equations
from a non-uniformly gridded physical domain to a uniform-grid
computational domain, and present our new variational approach
technique for controlling the motion of grid points. Importantly,
we provide in Sections 4 and 5 detailed verification of our numer-
ical technique with emphasis on accuracy of interfaces, and study
the numerical oscillations inherent to non-dissipative solutions as
a function of the cell Peclet number. Throughout these sections, we
provide comparison with prevailing exiting numerical algorithms.

2. Governing equations

2.1. Equilibrium reactions

In many cases, accounting for chemical reactions, namely proton
and hydroxyl dissociation, is important for accurate prediction of
electromigration in general, and of isotachophoresis in particular.
This is because mobility values for the majority of electrolytes are
not constant; they depend on the dissociation level of the (weak)
electrolyte which is a strong function of local pH values. In turn,
since hydronium and hydroxide ions are shared by all reactions,
pH values are a function of all chemical components in the system.
The use of equilibrium reaction has become fairly standard in the
solution of electromigration problems and can be found in several
publications including [4,17]. This is because electromigration and
diffusion rates are typically much faster then the kinetic rates of the
reactions, as originally shown in [17]. By combining the algebraic
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quilibrium relations for all ionic states with the electroneutrality
ssumption, an implicit algebraic equation for the concentration
f hydronium ions, cH, can be derived. This equation is typically
olved iteratively to obtain pH values in the channel. In this section
e present the derivation of a new polynomial form for the equi-

ibrium equation and discuss the construction of the polynomial
oefficients. This polynomial form allows both for a direct solution
f the equation, as well as a reduced cost in iterative solutions.

We begin with the net-neutrality equation expressed as a func-
ion of the total (analytical) concentrations ci, the dissociation
actor gi,z, the hydronium concentration cH and the water equilib-
ium coefficient KW:

N

i=1

ci

pi∑
z=ni

zgi,z + cH − KW

cH
= 0, (1)

here (·)i indicates a property of the family i, (·)i,z indicates a prop-
rty of the ionic state z belonging to the family i, and ni and pi are
espectively the minimum and maximum valence values within
amily i. A detailed derivation of Eq. (1) can be found in [18]. The
issociation factor is given by

i,z = Li,zcz
H∑pi

z=ni
Li,zcz

H

, (2)

here Li,z are known constant coefficients obtained from the
quilibrium coefficients of the different ionic states. Since the
enominator in (1) is not a function of z, it can be removed from
he inner summation to yield

H

N∑
i=1

ci∑pi
z′=ni

Li,z′ cz′
H

pi∑
z=ni

zLi,zcz
H + c2

H − KW = 0. (3)

y finding a common denominator to all three terms

H

N∑
i=1

ci

⎡⎢⎢⎢⎣
N∏

j = 1
j /= i

⎛⎝ pj∑
z′=nj

Lj,z′ cz′
H

⎞⎠ ·
pi∑

z=ni

zLi,zcz
H

⎤⎥⎥⎥⎦
+

N∏
j=1

⎛⎝ pj∑
z′=nj

Lj,z′ cz′
H

⎞⎠ (c2
H − KW ) = 0. (4)

inally, merging the two terms under brackets, Eq. (4) can be writ-
en symbolically as

N

i=1

ciPi + Q = 0, (5)

here

Q =
N∏

j=0

Qj, Pi = cH

N∏
j=1

⎛⎝ pj∑
z′=nj

Li,z′ (1 + (z′ − 1)ıij)c
z′−nj

H

⎞⎠ ,

and

Q0 = (c2
H − KW ), Qj =

N∏
j=1

⎛⎝ pi∑
z′=ni

Lj,z′ c
z′−nj

H

⎞⎠ .

(6)

While the expressions for Pi and Q may appear complex, they

erely represent the coefficients of a polynomial, using the known

uantities Li,z. An important property of this new form of the net
eutrality constraint is that the polynomials coefficients Pi and Q
eed to be calculated only for the first time step of the simulation,
nd these then hold for all spatial locations and subsequent times.
r. A 1217 (2010) 588–599

Only the concentrations ci change in time and space, as described
in the next section. As a result, only the summation over N species
appearing in (5) has to be performed repeatedly. In addition, for the
first step in the simulation (or for other problems where equilib-
rium needs to be solved just once) the roots of the polynomial can
be computed directly by solving for the eigenvalues of the com-
panion matrix. Furthermore, the polynomial form readily supplies
the derivative of (5) without having to analytically or numerically
derivate (1). This is convenient for implementation of iterative
methods such as Newton–Raphson (for example, in subsequent
time steps in the simulation, when the previous solution is a good
initial condition), which make use of this derivative.

The polynomials Q and Pi are simple to construct using a matrix
approach. For example, each of the polynomials Qj can be consid-

ered to be the product of the matrix L̂ and the vector cH consisting
of powers of cH from zero to r, where r is the highest possible power,
given by r = max

j
(pj − nj):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q0
Q1

...

Qk

...

QN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−KW

L1,n1

0

L1,n1+1

1

. . .

0

L1,p1

0

0

...
...

...
...

...

Lk,nk
. . . Lk,0 . . . Lk,pk

...
...

...
...

...

LN,nN
. . . LN,pN

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

cH

c2
H

c3
H

...

cr−1
H

cr
H

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= L̂cH . (7)

In other words, row j in L represents the coefficients of the corre-
sponding polynomial Qj. The rest of the row is padded with zeros
to assure all lines have the same number of elements. To obtain Q
we need to multiply all the polynomials Qj. Alternatively, we can
obtain the coefficients of Q by convolving all the rows of the matrix
L. The polynomials Pi are constructed similarly.

2.2. Electromigration–diffusion equations

In [8] we employed a new form of the electromigration–
diffusion equations which makes use of pH-dependent effective
mobilities and diffusivities. This form was based on the approach
taken by Saville and Palusinski [17,19], but is different in that the
flux terms depend directly on the total concentrations instead of on
individual ionic concentrations. In the Supplementary Information
we show a simple derivation of this form, where the effective mobil-
ity and diffusivity naturally arise when the fundamental equations
are expressed as a function of the dissociation factor gi,z. Similar
treatment is then given to the ionic flux, in order to determine
the local electric field as a function of the current density and the
total concentrations. This form proves useful in the derivation of
characteristics boundary conditions as presented in Section 3.4.

The governing equation can be summarized with a set of
advection–diffusion equations for the total concentrations ci,

∂ci

∂t
= ∂

∂x

[
∂(Dici)

∂x
+ �i

∂�

∂x
ci − uci

]
i = 1 . . . N, (8)

and an equation for the electric field, obtained from invoking cur-
rent conservation along the channel,( )

∂�

∂x
= − 1

�
j + ∂S

∂x
. (9)

Here �i and Di are respectively the effective mobility and diffusivity
of the species family i, and are given by �i =

∑pi
z=ni

�i,zgi,z(cH) and
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i =
∑pi

z=ni
Di,zgi,z(cH). u is an area-averaged bulk flow velocity, � is

he local conductivity, and ∂S/∂x is a term associated with diffusive
urrent. All terms are fully described in detail in the Supplementary
nformation.

. Numerical method

We take a non-dissipative approach in the solution of the equa-
ions to allow accurate resolution of ITP interfaces. As mentioned
arlier, the typically cited [9] condition for guiding the discretiza-
ion (or grid spacing) of the domain is that the cell Peclet number
atisfy

e�x = a �x

D
< 2. (10)

owever, this approach is over-restricting as it gives no consid-
ration to the range of wave numbers appearing in the problem.
scillations, if they appear, are the result of unresolved wave num-
ers exhibiting dispersion. For a smooth functions (as is the case for
ll solution discussed in this work), such unresolved wave numbers
ould appear in regions of high gradients where the spatial resolu-

ion of the discretization is insufficient. Thus, as long as regions of
igh gradients satisfy this requirement (or its equivalent for other
chemes), regions of low gradients can be more sparsely gridded,
nd yet maintain a non-oscillatory solution. Furthermore, a priori
hoice of the grid spacing according to (10) is often non-trivial as
he advection velocity is space, time, and species dependent.

To address these issues, the numerical approach we propose is
omposed of two main components. The first is the use of a sixth
rder compact scheme which offers higher resolution and thus
ecreases the number of grid points required to accurately capture
harp gradients. The second is the development of an adaptive grid
rocedure which is able to dynamically concentrate grid points at
egions of high gradients at the expense of regions with shallower
radients. While this approach does not mathematically guaran-
ee monotonicity, we are able to achieve smooth and stable results
t high electric fields, while decreasing the computational time by
early two orders of magnitude. In Section 3.1 we formulate the
overning equations on a non-uniform grid, by mapping the phys-
cal domain onto a uniform computational domain. In Section 3.2

e present our variational approach for dynamically adapting the
rid mapping based on local gradients in the solution. In Section 3.3
e present the spatial discretization scheme, and finally in Section

.4 develop the boundary conditions.

.1. Transformation from physical to computational domain

Taking the approach offered by Spotz and Carey [20], we define
mapping function between the physical domain x, having a non-
niform grid, and the computational domain z, having a uniform
rid. Considering the mapping function to be of the form x = x(z),
he fist derivative with respect to x can be expressed in terms of z
s

∂(·)
∂x

= ∂(·)
∂z

∂z

∂x
= 1

xz

∂(·)
∂z

, (11)

here xz denotes a derivative of x with respect to z. Similarly, the
econd derivative is given by

∂2(·)
2

= 1
2

∂2(·)
2

− ∂(·) xzz
3

. (12)

∂x xz ∂z ∂z xz

n addition, the partial time derivative takes the form

∂(·)
∂t x=const

= ∂(·)
∂t z=const

− ∂(·)
∂x

∂x

∂t
= ∂(·)

∂t z=const
− ∂(·)

∂z

1
xz

∂x

∂t
. (13)
r. A 1217 (2010) 588–599 591

Substituting Eqs. (11)–(13) into (8) and (9), we obtain the
advection–diffusion equation the in the computational domain

∂ci

∂t
= 1

x2
z

[
∂2(ciDi)

∂z2
− ∂(ciDi)

∂z

xzz

xz

+ �ici

(
∂2�

∂z2
− xzz

xz

∂�

∂z

)
+ ∂(�ici)

∂z

∂�

∂z

]
+ (xt − u)

∂ci

∂z

1
xz

,

(14)

with

∂�

∂z
= − 1

�

(
jxz + ∂S

∂z

)
, (15)

and(
∂2�

∂z2
− xzz

xz

∂�

∂z

)
= − 1

�

(
∂2S

∂z2
− ∂S

∂z

xzz

xz
+ ∂�

∂z

∂�

∂z

)
. (16)

Eq. (14) can now be discretized using standard uniform grid
schemes. It remains to determine the mapping function x(z) at all
times. This is done using an adaptive meshing procedure described
in Section 3.2.

3.2. Adaptive mapping

We wish to increase the grid density in areas of high gradients in
the solution, at the expense of low gradient regions. To obtain this
type of grid distribution, we minimize the following cost function

J[x] =
∫ L

0

w(z)

(
∂x

∂z

)
dx =

∫ L

0

w(z)
∂x

∂z

(
∂x

∂z
dz

)
=

∫ L

0

w(z)x2
z dz, (17)

where w(z) will be referred to as the regulating function. As the
functional is minimized, regions where the regulating function
acquires high values will result in small x� values (higher grid den-
sity). To minimize the functional, let us look at the variation

ıJ = J[x + ıx] − J[x] =
∫ L

0

w(z)

(
∂x

∂z
+ ∂ıx

∂z

)2

dz

−
∫ L

0

w(z)

(
∂x

∂z

)2

dz. (18)

Omitting non-linear terms, we obtain

ıJ = 2

∫ L

0

w(z)
∂x

∂z

∂ıx

∂z
dz. (19)

Since the length of the physical domain is fixed, no perturbations
are allowed at its end point, i.e., ıx

∣∣
0

= ıx
∣∣
L

= 0. Integrating by
parts yields

ıJ = 2

∫ L

0

∂

∂z

(
w(z)

∂x

∂z

)
ıx dz. (20)

The functional is minimized when ıJ = 0, which leads to the require-
ment that the integrand must vanish,

∂

∂z
(wxz) = 0. (21)

Directly solving for x(z) from (21) will require the solution of an
ODE at each time step and interpolation of the solution on the new
grid. Instead, we may try and approach the minimum by stepping
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Fig. 2. Modified wave number due to numerical discretization versus true wave
number, for first and second derivative approximations (w′ and w′′ respectively). (a)
Exact differentiation, (b) sixth order compact scheme – Eqs. (31) and (33), and (c)
second order central differences scheme. The sixth order compact scheme is able to
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n the right direction to minimize ıJ, as proposed by Jameson et al.
21]. Specifically, if we choose

x = −�
∂

∂z
(wxz), (22)

here � is some positive scalar, (20) becomes

J = −�

∫ L

0

[
∂

∂z
(wxz)

]2

dz. (23)

ince J ≥ 0 and ıJ ≤ 0, adoption of relation (22) will always result in
ncremental steps taken towards the optimum. We may regard Eq.
22) as an additional, coupled hyperbolic equation, describing the

otion of grid points in the physical domain,

∂x

∂t
= −�

∂

∂z
(wxz)� − �g(z). (24)

owever, g(z) involves two derivatives with respect to z, hence at
ach time step x becomes less smooth by two classes. To solve this
roblem, Jameson et al. [21] suggested the following smoothing
perator

¯ − ε
d2ḡ

dz2
= g, (25)

here ḡ is the modified gradient, and ε is a smoothing parameter.
s ε → 0 ḡ → g, and as ε → ∞ ḡ → 0. The final equation for the
daptive grid is hence

∂x

∂t
= −�ḡ(z). (26)

t remains to determine the regulating function w(z) that will drive
he adaptive grid. Since we are interested in increasing grid density
n regions of high gradients, a natural choice would be

∗∗∗
i =

∣∣∣∣∂ci

∂z

∣∣∣∣ i = 1 . . . N, (27)

here i indicates a specific species. The weight function of each
pecies is then normalized by its maximum value in the domain, to
ield a set of vectors (one for each species) which are all of order
nity,

∗∗
i = w∗∗∗

i

max(w∗∗∗
i

)
. (28)

t each grid point the maximum value of all species is chosen

∗ = max(w∗∗
i ). (29)

constant is added to force equidistribution when the regulating
unction is uniformly zero,

= KAG + w∗. (30)

Two parameters remain to be determined by the user: � and
AG. � can be regarded as the speed at which the grid adapts to
hanges in the regulating function. If its chosen value is too small,
he grid will not adapt fast enough to gradients forming in the chan-
el. On the other hand, since (24) is propagated together with the
overning equation, if its value is too high, it may limit the stable
ime step. Numerical experimentation shows that a value of � = 1
orks well for most ITP applications. The parameter KAG deter-
ines the relative weight assigned to regions of zero gradients,

nd thus strongly affects the overall grid distribution. Lower values
f KAG tend to deplete zero-gradient regions of grid points, focus-
ng them at sharp interface. Higher values of KAG result in a nearly

tatic (uniform) grid distribution with little or no grid enrichment
t sharp interfaces. In the Supplementary Information we present
guideline for the choice of KAG, based on a simple scaling analysis
f the steady state grid distribution. We show that the parameter
AG can be expressed as a function of the number of grid points
accurately resolve higher wavelengths, thus exhibiting higher resolution compared
with the second order central differences scheme.

NI that one wishes to place at each ITP interface. This allows the
use of a single parameter value across different simulations (e.g., at
different current densities).

3.3. Spatial discretization

The choice of spatial discretization is key for the accurate resolu-
tion of sharp interfaces. In [8] we showed that the use of numerical
dissipation leads to overly diffused interfaces and thus fails to accu-
rately predict the concentration distribution of analytes focused at
those interfaces. A centered scheme is therefore a natural choice for
the spatial discretization. However, monotonicity of the solution
is not guaranteed, and the possibility and occurrence of spurious
oscillations is largely dependent on the ability of the scheme to
resolve high wave numbers. A significant number of studies have
been published in the field of electrophoretic transport which dealt
with the reduction or elimination of such oscillations [11,13–15].
However, the majority of solutions proposed involved some form of
numerical dissipation. Centered schemes, when used, were always
limited to second order.

Higher resolution can be readily obtained by employing a cen-
tered compact scheme, as suggested by Lele [22]. Here, we chose
a sixth order compact scheme which offers significantly higher
resolution compared to an explicit second order scheme, at the
cost of solving a tridiagonal system. Fig. 2 compares the first and
second derivative resolution of both schemes. Examining the first
derivative, the standard second order centered scheme resolves
25%, 8% and 2% of the wave numbers to an accuracy of 10%, 1%
and 0.1% respectively. This is compared to the sixth order compact
scheme with resolving efficiencies of 70%, 50% and 35% for the same
accuracies. The scheme uses a five point symmetric stencil for all
internal grid points. The approximation for the first derivative is
given by

1
3

f ′
j−1 + f ′

j + 1
3

f ′
j+1 = 1

�z

[
1
9

fj+2 − fj−2

4
+ 14

9
fj+1 − fj−1

2

]
. (31)
Since ITP boundary conditions are non-periodic, a fifth order
skewed scheme is used at two nodes at each boundary. For the
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eft boundary for example,

f ′
1 + 4f ′

2 = 1
�z

[
−37

12
f1 + 2

3
f2 + 3f3 − 2

3
f4 + 1

12
f5

]
,

and
1
6

f ′
1 + f ′

2 + 1
2

f ′
3 = 1

�z

[
−10

18
f1 − 1

2
f2 + f3 + 1

18
f4

]
.

(32)

imilarly, the internal-points approximation for the second deriva-
ive is given by

2
11

f ′′
j−1 + f ′′

j + 2
11

f ′′
j+1

= 1
�z2

[
3

11
fj+2 − 2fj + fj−2

4
+ 12

11
fj+1 − 2fj + fj−1

1

]
, (33)

nd at the boundaries,

f ′′
1 + 137

13
f ′′
2 = 1

�z2

[
1955
156

f1 − 4057
156

f2 + 1117
78

f3 − 55
78

f4 − 29
156

f5 + 7
156

f6

]
1

10
f ′′
1 + f ′′

2 − 7
20

f ′′
3 = 1

�z2

[
99
80

f1 − 3f2 + 93
40

f3 − 3
5

f4 − 3
80

f5

]
.

(34)

Eqs. (31)–(34) constitute two closed systems. The solution of
hese systems yields approximations to the first and second deriva-
ive at all grid points in the computational domain. The derivatives
re then used in Eq. (14) to obtain the local time derivative at every
oint. It is important to note that by using (32) and (34), the bound-
ry values are modified according to information obtained from
ithin the domain. This boundary condition is of course not gen-

rally true; in many physical cases the boundary conditions are
xed, or information propagates from the outside. For example,

n typical isotachophoresis problems wherein the solution domain
onsist of a microchannel (or capillary) between end-channel reser-
oirs. In Section 3.4 we detail another step in the solution where
he time derivatives at the boundaries are determined according to
he direction of the local characteristics.

In order to maintain an overall sixth order accuracy, we also
iscretized the grid mapping x = x(z) using the same sixth order
ompact scheme: At each time step, we compute the new grid point
oordinates according to (26). We then compute new values for
z and xzz using the sixth order operators (31)–(34). These deriva-
ives are then used in the next time step in the governing equations
14)–(16), as well as in the new calculation of the cost function (23).
he smoothing operator (25), however, need not be discretized
ith the same accuracy, as a smoothed gradient ḡ of lower accuracy

mpacts only the absolute values of the grid points. The accuracy
f governing equations are unaffected by the smoothing proce-
ure, provided that the derivatives xz and xzz are computed to a
ufficiently high accuracy. We therefore discretized Eq. (25) using
tandard second order central differences.

.4. Boundary conditions

Published discussions (and analyses) of boundary conditions for
lectrophoretic transport problems are very limited. For example,
alusinski et al. [19] and Dose and Guiochon [9] used strictly fixed
oncentration values at the boundaries; while Sounart and Bay-
ents [11], Ikuta and Hirokawa [14], Ermakov et al. [12], and Hruska
t al. [7] did not explicitly discuss the boundary conditions. One
otable exception is Breadmore et al. [10], who recently extended
heir code (based on the code by Palusinski et al.) to allow extrap-
lation from the domain onto the boundary, thus allowing waves
o leave the domain.
Many ITP simulations are possible using long domains at which
he ITP interfaces are at all times far from the boundaries and
oncentration values are fixed at both ends. However, there is an
bvious advantage in computational time to employing smaller
omains in the region of interfaces and ITP zones of interest. In our
r. A 1217 (2010) 588–599 593

experience, there is much benefit also in analyzing a frame of refer-
ence moving with the interface(s) of interest. In such cases, as the
TE and analytes assume new concentration values (according to the
Kohlrausch regulating function [23] for fully ionized ions, or, more
generally, the Jovin [24] and Alberty [25] relations), concentration
waves are sent from the interface and towards the boundaries. For
such cases, a code should properly allow these waves to leave the
domain and avoid non-physical reflections.

First we determine the direction of waves at the boundaries. For
waves leaving the domain, the boundary value will be determined
by solving the equation using backward differences, as described
in Section 3.3. For waves entering the domain, the boundary con-
ditions will be fixed according the concentration in the reservoir. If
the reservoir concentration is constant in time, the latter is equiv-
alent to setting the time derivative at the boundary to zero.

Note that the direction of wave propagation cannot be deter-
mined solely by the sign of the velocity for each species (such an
approached were employed, for example, in the explicit upwinding
schemes used by Ikuta and Hirokawa [14] and Sounart and Bay-
gents [11]). We first explore the reason for this complexity, and
then present a more general method.

The complexity of these boundary conditions can be explained
by analyzing a simple advection and electromigration problem.
Neglecting diffusion for the moment, we can write the flux, f, of
some species i as

fi = (�iE − u)ci, (35)

where E is the electric field. By inspection, and by analogy to linear
PDEs, one might conclude that the wave velocity is given by the
coefficient of ci, �iE − u, and therefore that the sign of this quan-
tity determines the direction of wave propagation. However, the
electric field is also coupled to the concentration ci (and to all other
concentrations in the system, e.g., by net neutrality) and so

dfi
dci

= (�iE − u) + �ici
∂E

∂ci
. (36)

The electric field can be expressed as the ratio of current density to
conductivity, E = j/�, and (36) becomes

dfi
dci

= (�iE − u) − �icij˛i

�2
= �iE

(
1 − ˛ici

�

)
− u, (37)

where ˛i is defined as
∑pi

z=ni
gi,z�i,zzF (see Supplementary

Information document), and ˛ici is the conductivity of the species
i. Clearly, when the relative conductivity of the species of interest
is low, 0 < ˛ici/� 	 1, the wave direction and the direction of ion
migration (velocity) are equal. However, as the relative conductiv-
ity increases, the sign of the expression on the right-hand side of
(37) may change. This change of sign results in a species which can
have a velocity vector pointing in the direction of electromigra-
tion, while its concentration gradients propagates in the opposite
direction. Although the latter example is an over-simplification, it
serves to highlight the importance of wave propagation analyses. In
short, the complexity of the problem arises from the dependency of
the electric field on all species in the system (and electroneutrality
insures a coupling between ions and counter-ions).

Moore [26] presented an analytical study of ITP where he pro-
vided a characteristic representation of the (hyperbolic) governing
equations. We here use characteristics theory to obtain a more
rigorous analysis of the wave direction, leading to a new set of
boundary conditions. To achieve this, we seek to express the system
of (coupled) transport equation in a semi-linear form of the type

∂c/∂t = A ∂c/∂x, where c is the vector of species concentrations
ci and A is a matrix of (generally non constant) coefficients. This
process becomes more complex when equilibrium chemistry is
involved since all species concentrations and their properties (such
as effective mobility) are coupled through the algebraic constraint



5 matog

(
p
t
c
i
d
S
s
b
(
r
a
a

W
a
r
u
i
c
p
r
w
f

g

N
d
a
o
h

E
m

w

a

p

A
c
v

H
a
t
i

94 M. Bercovici et al. / J. Chro

5). In order to overcome this complexity, we make use of three sim-
lifying assumption: First, we assume safe pH conditions (i.e., that
he concentration of the migrating species of interest are signifi-
antly larger than the concentrations of hydronium and hydroxide
ons) at the boundaries. This allows excluding the explicit depen-
ence of conductivity on hydronium and hydroxide concentration.
econd, we assume the system is well buffered (i.e., that the sen-
itivity of all variables to slight changes in pH is small) at the
oundaries. This allows treating species’ pH-dependent properties
e.g., effective mobility) as locally constant. Third, we assume cur-
ent is carried mostly by electromigration (versus diffusion). This
llows expressing the electric field as a function of the conductivity
nd the (known and constant) current density,

∂�

∂x

 − 


�
, (38)

hile the assumptions presented here do not necessarily hold for
ny electrophoretic transport problem, they are useful for a wide
ange of real ITP applications. In particular, these assumptions are
seful for the solution of ITP problems in a frame of reference mov-

ng with the interface(s). In this case, the sharp gradients are always
ontained within the domain, while low-gradient adaptation waves
ropagate out of the domain. For ITP problems solved in the frame of
eference of the lab (ITP interfaces are moving), these assumptions
ould generally hold as long as the sharp ITP interfaces remain far

rom the boundaries.
Using the first assumption, of safe pH at the boundaries, the

radient of the electric field can be expressed as

∂2�

∂x2
= 


�2

N∑
j=1

∂�

∂cj

∂cj

∂x
= 


�2

N∑
j=1

˛j
∂cj

∂x
. (39)

ote that the explicit dependency of the conductivity on cH and cOH
oes not appear in this expression. However, the different ˛j remain
function of pH and express the dependency of the conductivity

n the dissociation factor of each species family. Using (39), the
yperbolic part of (8) can be written as

∂ci

∂t
= �ici




�2

N∑
j=1

˛j
∂cj

∂x
+

(
�i

∂�

∂x
− u

)
∂ci

∂x
. (40)

valuated at the boundary, the last expression can be written in
atrix form as

∂c

∂t
= A

∂c
∂x

= (A1 + A2)
∂c
∂x

, (41)

here the matrices A1 and A2 are given by

A1 = diag(p)
A2 = qT r

, (42)

nd

i = �i
∂�

∂x
− u, qi = 


�2
ci�i, ri = ˛i. (43)

t each time step, the time derivatives at both boundaries are then
onverted to the characteristic variables by calculating the eigen-
alues and eigenvectors of the matrix A,

∂R
∂t

= V−1 ∂c
∂t

. (44)
ere V is matrix whose rows are the eigenvectors of A. In the char-
cteristics space, the direction of the characteristics is identifies by
he sign of their eigenvalues. For the characteristics propagating
nto the domain, the time derivative information from within the
r. A 1217 (2010) 588–599

domain is invalid, and their time derivatives are set to zero. For the
left boundary for example,

∂R∗
i

∂t
=≤

{
∂Ri

∂t
�i ≥ 0

0 �i < 0
. (45)

The characteristic variables are then converted back to the primi-
tive variables,

∂c
∂t

= V
∂R∗

∂t
, (46)

to yield the time derivative that will be used at the boundary.
Eq. (46) expresses the change in concentration at the bound-

aries only due to information propagating from within the domain
and towards the boundary. The information from waves that are
propagating into the domain is excluded and prevented from being
extrapolated onto the boundary. While several strict assumptions
are required to obtain this result, these assumptions hold for many
realistic problems of interest. An example solution for a case of
analyte focusing using ITP, solved in a frame of reference mov-
ing with the plug, is presented in Section 5. For cases where
the system is either poorly buffered or outside of safe pH, we
resort to using significantly longer computational domains such
that significant wave fronts do not reach the boundaries within
the computational time of interest. The adaptive grid procedure is
useful in such cases, as little computational cost is spent on long
regions of the domain where the solution exhibits concentration
plateaus.

3.5. Time discretization

Capturing the transient dynamics of electrokinetics is key to the
design of injection schemes, detector placement, and prediction of
stacking and focusing rates and analyte concentration [27,28]. To
enable operation across different initial conditions and buffer sys-
tems and yet avoid waste in computational time, we make use of
the third order Runge–Kutta–Bogacki–Shampine (RK23) scheme.
This method uses two sequential Runge–Kutta orders to estimate
truncation error, and adjusts the time step accordingly. For com-
pleteness, the Runge–Kutta steps and the error estimation are
provided in the Supplementary Information.

4. Verification

The results presented here were obtained using an un-complied
version of the code under Matlab release version R2007b on a 32 bit
Windows XP operating system. An Intel Core 2 Duo 2.0 GHz T7300
CPU with 2 GB of RAM was used as the computing platform (using
only one of the cores).

4.1. Plateau values

For zones achieving plateau mode under ITP, a semi-analytical
(iterative) solution exists for the concentration values as a func-
tion of their chemical properties and the properties of the LE and
counter-ion [29]. Comparison of the simulation with these analyti-
cal values allows verification of the implementation of the chemical
equilibrium physics, the conductivity and electric field calculations,
and the modified fluxes due to the adaptive grid. Fig. 3 presents
the separation and focusing of five acids (both strong and weak)
achieving plateau values. The names and properties of the differ-

ent species (including the LE, TE and counter-ion) are listed in
Table 1a. The species were chosen so to represent strong acids (LE,
A2), monovalent weak acids (A3, A5, TE), polyvalent weak acids
(A1) and ampholytes (A4). Table 1b presents a comparison between
simulation and analytical results for pH values, concentration, and
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Table 1
Quantitative verification of plateau value calculations. (a) List of valence, pKa, and mobility values used in the simulation. (b) Comparison of analytical (shaded columns,
italicized font) and numerical (white columns, Roman font) values obtained for pH, concentration, and effective mobility in plateau mode ITP.

(a) Figure symbol Acid name Valence pKa �z,i (×109 m2/V s)

LE Hydrochloric −1 −2 −79.1

A1 Arsenic −1 2.19 −35.2
−2 6.94 −70

A2 Sulfamic −1 −2 −50.3
A3 Acetic −1 4.756 −42.4

A4 Aspartic +1 1.99 +31.6
−1 3.9 −31.6
−2 10.002 −51.8

A5 Cacodylic −1 6.184 −29.9
TE 3-Phenylpropionic −1 4.664 −26.5

(b) Figure symbol Acid name pH c (mM) �i (×109 m2/V s)

LE Hydrochloric 7.77 7.77 100.0 100.0 −79.1 −79.1
A1 Arsenic 7.83 7.83 49.4 49.4 −66.4 −66.0
A2 Sulfamic 7.84 7.84 86.5 86.5 −50.3 −50.3
A3 Acetic 7.87 7.87 81.0 81.0 −42.4 −42.4
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A4 Aspartic 7.93
A5 Cacodylic 7.95
TE 3-Phenylpropionic 7.96

: Numerical; : analytical.

ffective mobility in each region. For most species and properties
resented, results agree to three significant digits. For arsenic acid
nd aspartic acid, results agree to two significant digits (0.6% dif-
erence).

.2. Interface shape

Palusinski et al. [30] studied the effect of the net-neutrality
pproximation on the shape of an ITP interface, and concluded it
an be safely used for typical ITP conditions. Saville and Palusinski
17] and earlier MacInnes and Longsworth [31] used this approxi-

ation to provide a simple analytical solution for the width of an

TP interface. The solution describes a three species ITP problem,
onsisting of two co-ions and a single counter-ion. While a closed-
orm solution for the concentrations could not be obtained, their
nalysis provided an explicit expression for the ratio of LE to TE

ig. 3. Concentration profiles for plateau mode ITP focusing and separation of five
trong and weak acids. Dots and circles on curves indicate the location of grid points
both symbols are used and alternated for clarity of presentation). The simulation
as performed using 200 grid points on a 40 mm long channel. A constant current

f 2 �A was applied along a 50 �m diameter channel yielding a current density
f 1018 A/m2. A quantitative comparison of these results with analytical values is
resented in Table 1b. The computational time was 110 s, for a simulated physical
ime of 1000 s.
93 70.4 70.4 −31.9 −31.8
95 69.1 69.1 −29.4 −29.4
96 65.0 65.0 −26.5 −26.5

concentrations as follows:
cLE

cTE
= e−x/ı, (47)

where x is the spatial coordinate, and ı is the characteristic width
of the interface given by

ı = R�TzLE

(
�TE(�LE − �CI)

�LE − �TE

) c0
LE

j
. (48)

Subscripts TE, LE and CI indicate properties related to the trailing
electrolyte, leading electrolyte, and counter-ion respectively. c0

LE is
the plateau value of the leading electrolyte.

We here use this analytical result as a basis for comparison in
testing the accuracy of our numerical scheme. To obtain numeri-
cal results to compare with the analytical formula, we deactivated
our chemistry module to produce idealized simulations wherein
no other species exist in the system (no hydronium or hydrox-
ide ions). A single ITP interface was simulated using fully ionized
LE, TE and counter-ion having mobilities of −8 × 10−8, −2 × 10−8

and +5 × 10−8 m2 V−1 s−1 respectively. The problem was solved in a
frame of reference moving with the LE, so that the interface appears
stationary and a steady state solution can be obtained. The LE con-
centration was set to 100 mM, and an equal concentration was set
for the counter-ion to satisfy electroneutrality. The domain was
10 mm long and discretized using 100 grid points. The interface
shape was simulated for current value of 0.1, 1 and 5 �A, and cur-
rent densities consistent with a 90 �m wide, 20 �m deep D-shaped
channel.

Fig. 4a presents the concentration profiles obtained from solu-
tions of the 1 �A case using various spatial discretization schemes.
The results are presented on a non-dimensional scale where the
concentration has been normalized by cLE and the axial coordinate
has been normalized by the characteristic length R�T�LEzLEcLE/j.
Fig. 4b presents on a logarithmic scale the ratio of LE to TE con-
centrations versus the normalized axial coordinate. The analytical
result (47) appears as a solid line. The first order upwind scheme
results in a significantly diffused interface, even when upwind-

ing is coupled to the adaptive-grid scheme. This is expressed as a
significant deviation from the linear analytical solution, for all spa-
tial locations. The second order centered scheme (with adaptive
grid), being non-dissipative in nature, performs significantly better
and is able to capture the correct slope, at least close the origin.
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Fig. 4. Comparison of the accuracy of various spatial discretization schemes versus
an analytical solution (solid line) which yields the shape of an ITP interface. The same
constant current is applied in all cases. (a) Non-dimensional concentrations show
significant differences in the predicted curves in linear coordinates. (b) The ratio of
concentrations is compared with the analytical solution by Saville and Palusinski
[4] (log-linear coordinates). The first order upwind schemes deviate significantly
from the analytical solution both on a uniform grid and an adaptive grid. The second
order centered scheme, being non-dissipative, accurately predicts the slope close
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o the origin. The higher resolution of the sixth order scheme allows the numerical
olution to follow the analytical curve further away from the origin, where the grid
ize increases significantly.

he sixth order compact scheme (with adaptive grid) is, due to its
igher resolution, able to follow accurately the analytical solution
ignificantly further from the origin.

A closer look into the performance of the sixth order compact
cheme is provided in Fig. 5, comparing the results obtained for
urrent densities of 0.1, 1, and 5 �A resulting in interface widths (ı
alues) of 175, 17, and 3.5 �m respectively. Fig. 5a presents the con-
entration profiles in the same non-dimensional scales as Fig. 4. As
xpected, the results for all three current densities collapse to the

ame curve. Fig. 5b presents on a logarithmic scale the ratio of LE
o TE concentrations versus the normalized axial coordinate. Again,
he analytical result (47) appears as a solid line, and over a finite
egion all three solutions collapse to the same curve. However,

ig. 5. Verification of the high-resolution adaptive-grid scheme in predicting the
hape of an ITP interface. (a) Non-dimensionalizing concentration and space col-
apses the profiles into a single curve. (b) The ratio of concentrations is compared

ith the analytical solution by Saville and Palusinski [4]. The slope of LE-to-TE con-
entration ratio is captured precisely at the interface in all three cases, but deviation
ccurs earlier as current is increased. (c) The error in prediction of absolute LE
oncentration values far from the ITP interface (large x̂ values).
r. A 1217 (2010) 588–599

the three solutions are not entirely self-similar: Since the physical
domain length remains unchanged (10 mm) for all cases, the nor-
malized domain length is significantly larger for higher currents.
For this reason, the grid spacing away from the interface appears
to be larger for higher currents. We intentionally present a slightly
under-resolved case (using 100 grid points) in order to note that
while the solution accurately captures the interface, it is not free of
oscillations. As current increases, the cell Peclet number away from
the interface increases, and this ultimately leads to some oscilla-
tions. These oscillations can be avoided by decreasing the domain
size or by increasing the number of grid points.

We note that although the deviation appears to be significant
away from the origin (approximately two orders of magnitude at
x̂ = 10), this is the result of the TE concentration reaching (nearly)
zero and thus amplifying the error in the ratio cLE/cTE. A more direct
estimate of the accuracy far from the origin can be obtained by
inspecting the deviation of the LE concentration from its plateau
value, as presented in Fig. 5c. For the sharpest gradient (ı = 3.5 �m)
the error is on the order of 10−6. The error for ı = 17 �m is on
the order of 10−9. For the widest interface (ı = 175 �m), the finite
domain truncates the asymptotic decay of the error before reaching
a constant value.

5. Results and discussion

5.1. Resolution and computational cost

In [8], we provided a comparison of the computational time
using a uniform versus adaptive grid for the case of a single ITP
interface. To compare solutions with equivalent resolution, we used
the minimum grid spacing of the adaptive grid solution in the uni-
form grid case and used the sixth order compact scheme for both.
As expected, the adaptive grid was shown to be more effective as
the width of the ITP interface compared with the channel length
decreased. For a (typical) 1/1000 ratio (e.g., 20 �m interface in a
20 mm long channel), a 75-fold decrease in the computational time
was obtained. For a 1/100 ratio, the computational time decreased
only by 5-fold.

However, in addition to the reduction in computational time
provided by the adaptive grid, we should compare also the (as we
shall see, slightly increased) computational cost associated with
the sixth order compact scheme, versus that of a second order
centered scheme. Two main factors should be taken into account:
First, as discussed in Section 3, the inherent increased resolution of
the compact scheme allows it to achieve equal numerical resolu-
tion given a decreased number of grid points. This tends to reduce
the overall computational cost. Second, the sixth order compact
scheme requires an additional solution of a tridiagonal system,
which tends to increase computational cost. As discussed in [22], for
a fixed spatial resolution, the stable time step remains unchanged
and therefore is not considered in this analysis.

We begin by numerically evaluating the reduction in the num-
ber of grid points enabled by use of the sixth order compact scheme,
while maintaining the same spatial resolution. To remove the cou-
pling between the solution and the behavior of the adaptive grid,
which may slightly vary depending on the scheme used, we here
disable the adaptive grid mechanism and perform the computa-
tions on a uniform grid. The single interface ITP problem presented
in Section 4.2 is used here again (with the same species and concen-
trations). A series of computations using an increasing number of

grid points is performed with a fixed current density of 0.5 �A. For
each computation, the magnitude of oscillations is monitored; nat-
urally, lower grid density results in higher non-dimensional wave
numbers. If these wave numbers are dispersed by the numerical
scheme, oscillations will appear. To quantify these oscillations we
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Fig. 6. Comparison of the level of oscillation for the sixth order compact scheme and
second order explicit scheme. (a) The normalized total variation of the LE concen-
tration versus the cell Peclet number showing that significant oscillations appear
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Fig. 7. The ratio between the time required for the sixth order compact scheme to
calculate the flux derivatives (right-hand side of Eq. (8)) to the time required for the
arlier (for lower Peclet numbers) for the second order scheme. (b) LE concentra-
ion profiles for both scheme demonstrating the oscillation levels for Pe�x = 2. (c)
he residual oscillation of the sixth order scheme on a logarithmic scale, showing
ome oscillation exist in all presented Peclet numbers, yet decay exponentially.

se the total variation (TV) [32] of the concentration profiles,

V(c) =
N∑

j=2

|cj − cj−1|, (49)

here index j indicates the grid point number, and N is the total
umber of grid points in the domain. Since the LE profile should vary
onotonically from zero to c0

LE , the theoretical value of the ratio of
V(cLE) to its maximum concentration c0

LE is exactly 1. Any oscilla-
ions in the concentration profile would increase this value. Fig. 6a
resents the value of TV(cLE)/c0

LE as a function of Peclet number, for
oth the sixth order compact and second order centered schemes
fter 100 s of simulation time. To illustrate the type of oscillations
ypically observed, Fig. 6b presents the concentration profile of the
E for both schemes for Pe�x = 2. At this Peclet number, the sixth
rder compact scheme is able to resolve the gradient, while the
econd order centered scheme exhibits oscillations, which result
n high values of TV. The Peclet number is based here on the (uni-
orm) grid spacing, the mobility and diffusivity of the LE, and the
lectric field in the TE region (since the electric field there is higher).
or large grid spacing, both schemes show significant oscillations
hich are on the order of the LE concentration c0

LE . The main differ-
nce between the schemes is in the value of the largest grid spacing
or which these oscillations become acceptably small. As shown in
he figure, for both schemes this change is rather abrupt, i.e., there
xists a threshold value for which the oscillations sharply decay.
owever, the sixth order scheme allows much larger grid spacing

o be used, and the ratio of Peclet numbers for which the parame-
er approaches 1, within a tolerance of 10−2, is approximately 1.8.

e note that while the oscillation significantly decay for Peclet
umbers smaller than the threshold, the solution is not entirely
scillation free but rather oscillates at much smaller amplitudes.
ig. 6c presents on a logarithmic scale the decay in the total vari-
nce parameters as Peclet number is decreased. In summary, due
o its higher resolution the sixth order compact scheme allows for
pproximately a 1.8-fold decrease in number of grid points, while
aintaining the same resolution.
Next, we performed a separate set of numerical simulations to
valuate the additional computational cost associated with solving
tridiagonal system for every spatial derivative computed using

he sixth order compact scheme. However, since the computa-
ion of derivatives comprises only part the total computation effort
ithin each time step (equilibrium chemistry solution, adaptive
second order centered scheme to perform the same operation. For larger grids, the
relative weight of the overhead in the calculation becomes smaller and the curve
asymptotes to a constant value.

grid cost function calculation, and boundary conditions enforce-
ment are some of the other computations routinely performed), it
is important to evaluate this additional cost in the setting of a real-
istic ITP problem. We therefore consider here again the case of a
single ITP interface, but with the adaptive grid and chemical equi-
librium operating. 100 mM hydrochloric acid, 20 mM acetic acid,
and 150 mM TRIS were used as LE, TE and counter-ion respectively.
A low current of 0.1 �A on a 50 �m diameter channel was used
in order to avoid oscillations. Using a large number of time steps
(at least several thousands per case), the time per computation of
flux derivatives (right-hand side of (8)) was evaluated. This was
performed for both the sixth order compact and the second order
centered schemes. Fig. 7 presents the computational time ratio
obtained as a function of the grid size. The increase in the time ratio
as the number of grid points increases suggests the existence of an
approximately constant overhead operation whose relative weight
becomes smaller. The current implementation was programmed
in Matlab (The MathworksTM, Natick, Massachusetts, USA), and it
may be that an implementation in a compiled form would yield a
smaller overhead and a more uniform time ratio. To make a conser-
vative estimate, we may consider the highest time ratio obtained
as representative. This result then shows that for the same number
of grid points, the second order centered scheme is approximately
12% faster than the sixth order compact scheme.

In summary, the gain from the additional resolution of the sixth
order compact scheme (which allows for a reduction in the number
of grid points) is therefore greater than the loss due to the solution
of the additional tridiagonal system. However, exact values for this
benefit likely depend on the existence of other physical modules in
the simulation, on the programming language used and on the over-
all quality of the implementation. For the current implementation,
using the two aforementioned numerical tests, we estimate the
sixth order compact scheme to be approximately 60% faster than
the second order centered scheme, for the same final resolution.

5.2. Adaptive grid and boundary conditions

Here, we illustrate the performance of our adaptive grid and
boundary condition formulation on a physically relevant ITP prob-
lem. Consider ITP focusing (from low initial concentration) of the
anion Arsenic acid. Table 2 lists chemical properties and initial

concentration of various electrolytes used in this system. A cur-
rent density of 500 A/m2 was considered in a 10 mm long domain
(equivalent to 1 �A through a 50 �m diameter capillary). We apply
a uniform counter-flow equal in magnitude to the electrophoretic
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Table 2
Equilibrium constants, corresponding valences, fully ionized electrophoretic mobilities (at negligible ionic strength), and initial concentrations for the electrolytes used in
the simulation of Section 5.2. Chemical properties are obtained from Hirokawa et al. [33].

Name pKa Valences Mobility (×10−9 m2 V−1 s−1) Diffusivity (×10−10 m2/s) Initial concentration

Hydrochloric acid (LE) −2 −1, 0 −79.1 20.3 20 mM
Acetic acid (TE) 4.756 −1, 0 −42.2 10.8 8 mM
TRIS (counter-ion) 8.076 0, +1 29.5 7.6 30 mM
Arsenic acid (ACE) 6.94, 2.19 −2, −1, 0 −70.0, −3.52 9.0 10 �M

Fig. 8. Simulation showing distributions of LE and TE ions (solid curve) in an ITP
focusing of arsenic acid in a 10 mm long domain using 150 grid points. Superposed
is a plot of grid density (dashed curve). The circles on the TE curve indicate the
location of grid point and show the clustering of grid points in regions of high con-
centration. The case is solved in a frame of reference moving with the zone, with
hydrochloric acid as LE, acetic acid as TE, and TRIS as a counter-ion (pH ∼ 7.8). (a)
The initial conditions consist of a diffused interface between the LE and TE on a
uniform grid (grid density equals 1.0 everywhere). (b) Immediately after electromi-
gration begins, the LE–TE interface sharpens and local grid density increases. (c) The
TE concentration adjusts to a new value, and a TE concentration interface is swept
towards the TE reservoir. A slight increase in grid density follows this high-gradient
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Fig. 9. Simulation showing the ITP focusing of arsenic acid for the same case pre-
sented in Fig. 8. The initial concentration of the analyte is 10 �M, and it is initially
present only in the TE portion of the domain (corresponding to a semi-infinite sam-
ple case where sample is loaded with the TE into the TE reservoir). Upon application
of an electric field, the analyte starts to focus at the interface between the LE and
TE (t = 0.6 s). The TE concentration adjusts to a new value as it migrates into the
region formerly occupied by LE; and this adaptation is accompanied by a decrease
in the electric field. The latter adjustment in turn increases the concentration of the
analyte throughout the channel (t = 24 s). At t = 180 s, the adaptation is complete,
the gradient in the TE has migrated out of the left boundary, and the left portion of
the channel has obtained a new concentration. The inset shows the concentration

more of them now migrate towards the high gradient regions of
the interface.

Fig. 9 shows the behavior of the focusing analyte for the same
simulation times presented in Fig. 8. The initial distribution of the

Fig. 10. The distribution of cell Peclet number, Pe = a �x/D, throughout the domain
E interface as it propagates leftward. (d) The high-gradient TE interface has now
assed through the left boundary and most grid points now migrate towards the
E-TE interface, increasing local grid density. The computational time was 585 s for
he total simulated physical time of 180 s.

elocity of the LE, so that sample zone is conveniently stationary
and so a solution in a frame of reference moving with the sam-
le zone is obtained). The computational constants used for this
ase are � = 5 and NI = 10. Fig. 8 presents a sequence of images cor-
esponding to various times in the focusing process. Initially, the
E concentration at the interface increases due to a large influx
from the left) and zero outflux (TE ions cannot overspeed LE ions).
he adaptive grid responds to the local increase in gradients by
ncreasing local grid density. When the TE concentration reaches
ts Kohlrausch value [23], the region of increased TE concentration

igrates towards the left-hand reservoir until the entire TE adjusts
o a new concentration.

Note that while TE ions electromigrate towards the right, this
oncentration wave moves towards the left. This is due to the fact
hat the electric field is strongly coupled to the TE concentration,
nd is higher where the concentration is lower. The overall ion
ux is higher in region of low concentration, and this causes a

ocal increase in concentration. As shown in Fig. 8c, an increased
rid density follows this wave up to the left boundary. The wave

moothly passes through the boundary and leaves the TE at a uni-
orm concentration. The latter phenomenon is an example where
on velocity direction alone insufficiently describes the propaga-
ion of concentration waves (see Section 3.4 regarding boundary
onditions). Next, the grid points automatically redistribute and
profiles of the sample at t = 24 s, 180 s on a larger y-axis scale, with circles indicating
the location of grid points. The sample zone is still in peak mode and sample peak
concentration continues to increase. Note that the maximum sample concentration
has increased by more than two orders of magnitude.
for the case presented in Fig. 8 at time t = 180 s. As shown in the inset, the Peclet
number near the interface decreases significantly to allow a non-oscillatory solution.
Far from the interface, where concentration gradients vanish, the Peclet number
increases by roughly two orders of magnitude. Yet these regions are also free of
(dispersion based) oscillation as the physical wave numbers in those regions are
small.
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nalyte represents a semi-infinite sample which is mixed homoge-
ously with the TE (it is semi-infinite as there is no limit to the
umber of analyte molecules which can arrive from the left-hand
eservoir). The analyte’s concentration at the interface increases
ontinuously, reaching nearly a 500-fold increase after 180 s. In this
xample, the analyte’s initial concentration is approximately three
rders of magnitude lower than that of the buffer, so it has neg-
igible effect on the local electric field (sample is in peak mode).
he adaptation of the TE to new concentration values is accompa-
ied by a decrease in the electric field, which in turn increases the
oncentration of the analyte throughout the channel. The analyte’s
oncentration front follows that of the TE and propagates towards
he TE well, eventually crossing through the left-hand boundary.
ig. 10 presents the maximum cell Peclet number throughout the
hannel at t = 180 s. As expected, most of the domain experiences
eclet numbers which are much larger than the aforementioned
estrictive requirement of (10) proposed in 1991 by Dose and Guio-
hon [4], and yet we obtain a non-oscillatory solution. Only within
he high-gradient interface region does the Peclet number reduce
o satisfy this requirement.

. Conclusions

We developed an efficient numerical solver which is able to
ccurately resolve sharp ITP interfaces while reducing the compu-
ational cost. This was achieved by utilizing a sixth order compact
cheme coupled to an adaptive grid which focuses grid points
ithin regions of interest. The adaptive grid we developed uses
unique variational approach in which a grid mapping function

from a non-uniformly spaced physical domain to a uniformly
paced computational domain) is marched in time so to minimize
radients in the computational domain. This approach was found
o be especially suitable for ITP problems where one or more nar-
ow, high gradient regions migrate within long domains which
therwise contain low or even zero gradients. To facilitate simula-
ions performed in a frame of reference moving with the ITP zones
allowing reduction in the domain size), we developed a set of char-
cteristics based boundary conditions. These boundary conditions
ccount for the strong coupling between the different species and
llow, under several assumptions, for concentration waves to freely
ross the boundaries.

Finally, extensive verification of the method was performed by
omparing both plateau values and interface shapes with avail-
ble analytical solutions. Further numerical tests demonstrated the
ncreased resolution obtained by the use of the sixth order com-
act scheme. These tests showed that the penalty in computational
ost associated with the compact scheme is small compared with
he gain in cost due to the reduction in the number of grid points
enabled by its increased resolution). Most of the computational

ain remains however due to the adaptive grid, reducing the com-
utational time by one to two orders of magnitudes for realistic

sotachophoresis problems.
Overall, the computational approach presented allows practi-

ioners to obtain fast and accurate predictions of ITP assays on a

[

[
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[
[
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personal computer and sets the ground for possible optimizations
or inverse problems using a fast solver as their core.
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